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Abstract

Objectives

The diaphragm changes position and respiratory excursions during postural loading. How-

ever, it is unclear how it reacts to lifting a load while breath-holding or breathing with simulta-

neous voluntary contraction of the abdominal muscles (VCAM). This study analyzed

diaphragm motion in healthy individuals during various postural-respiratory situations.

Methods

31 healthy participants underwent examination of the diaphragm using M-mode ultrasonog-

raphy, spirometry, and abdominal wall tension (AWT) measurements. All recordings were

performed simultaneously during three consecutive scenarios, i.e., 1. Lifting a load without

breathing; 2. Lifting a load and breathing naturally; 3. Lifting a load and breathing with simul-

taneous VCAM.

Results

Using paired-samples t-tests, lifting a load without breathing displaced the diaphragm’s

expiratory position more caudally (P < .001), with no change noted in the inspiratory position

(P = .373). During lifting a load breathing naturally, caudal displacement of the diaphragm’s

inspiratory position was presented (P < .001), with no change noted in the expiratory posi-

tion (P = 0.20) compared to tidal breathing. Total diaphragm excursion was greater when

loaded (P = .002). Lifting a load and breathing with VCAM demonstrated no significant

changes in diaphragm position for inspiration, expiration, or total excursion compared to nat-

ural loaded breathing. For all scenarios, AWT measures were greater when lifting a load (P

< .001).
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Conclusion

In healthy individuals, caudal displacement and greater excursions of the diaphragm

occurred when lifting a load. The postural function of the diaphragm is independent of its

respiratory activity and is not reduced by the increase in AWT.

Introduction

The diaphragm is one of the most important skeletal muscles of the human body, performing

vital respiratory function. The diaphragm is not only the chief inspiratory muscle but is also

involved in non-respiratory activities, acting as the lower esophageal sphincter [1] and playing

a crucial role in postural stabilization [2, 3]. During contraction, the central tendon of the dia-

phragm moves caudally and reduces intra-thoracic pressure while concurrently increasing

intra-abdominal pressure (IAP) [4]. As lung volume increases above tidal volume, it correlates

positively with IAP and causes stiffening of the spine [5]. Conversely, IAP decreases during

tidal expiration. However, in situations requiring higher respiratory demands, IAP may

increase during expiration due to abdominal muscle activity assisting in the respiratory pump

[6, 7].

Adequate IAP is an essential mechanism for spinal stabilization [8]. Greatest IAP is gener-

ated in non-respiratory maneuvers when strong co-activation between the diaphragm and

abdominal musculature occurs [9]. During lifting tasks, IAP correlates with the postural

demands [10, 11]. Of all abdominal muscles, the transversus abdominis (TrA) activity is the

most closely related to changes in the IAP [12, 13]. Several studies have demonstrated that

activity of the diaphragm and TrA precedes phasic movement of the limbs as a part of the

anticipatory postural adjustments [2, 14–16]. Therefore, the suboptimal reaction of the dia-

phragm [17, 18] and/or abdominal muscles [19, 20] to spinal loading may result in low back

pain (LBP). Still, controversies exist regarding spinal stabilization mechanisms and its role in

LBP. Hodges et al. [21] demonstrated through electromyography that transversus abdominis

activity is delayed in individuals with LBP and suggests that the mechanism of preparatory spi-

nal control is altered in people with LBP for movement at a variety of speeds [20]. This state-

ment, however, is inconsistent with the results of Mehta et al. [22] who did not confirm a

significant difference in trunk muscle activation and deactivation relative to arm motion

between LBP subjects and healthy controls. Albeit there is no clear consensus if trunk muscle

timing is an underlying mechanism of LBP as Lederman [23] states in his paper entitled “The

Myth of Core Stability” that weak trunk muscles, weak abdominals, and imbalances between

trunk muscles groups are not pathological, just a normal variation not leading to back pain.

Also, wide variability in the degree of diaphragm contractility during breathing and postural

tasks exists [24]. Therefore, we designed this study to better understand the diaphragm and

abdominal muscles involvement during lifting tasks which may help to clarify controversial

opinions on spinal stabilization. Based on our results, future follow-up studies may identify

specific methods to improve postural stabilization in strength training and LBP treatment.

Dynamic imaging evaluating the diaphragmatic motion can be performed with different

techniques, including fluoroscopy [25], dynamic MRI [17, 26, 27], EMG [28, 29], and M-mode

ultrasonography [30]. There are several advantages of M-mode ultrasonography; it is a radia-

tion-free, widely available, cost-effective, and real-time type of assessment [31]. Moreover, dia-

phragm excursion measurements using M-mode techniques are accurate and reproducible

[32, 33].
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This study investigates diaphragmatic excursions during postural tasks using M-mode

ultrasonography. Unlike MRI, ultrasonography allows the assessment of diaphragmatic move-

ment during various natural movements in a vertical posture or during more challenging

activities such as lifting. On the other hand, the M-mode ultrasonography can visualize only

the posterior and lateral parts of the diaphragm but cannot differentiate the costal and crural

sections. Furthermore, ultrasound imaging of the diaphragm is highly operator-dependent

and position-dependent, and therefore the experience of the operator is crucial for obtaining

suitable images. For a more complete understanding, we combined ultrasonographic assess-

ment with spirometry and evaluation of abdominal wall tension (AWT) by a device called

DNS Brace, which is designed to indirectly monitor IAP changes [34, 35].

This prospective cross-sectional study aims to determine the changes in diaphragmatic

position and to measure diaphragmatic excursions during three scenarios: (1) Lifting a load

without breathing; (2) Lifting a load and breathing naturally; (3) Lifting a load and breathing

with simultaneous voluntary contraction of the abdominal muscles (VCAM). The previous

MRI studies analyzed postural-respiratory motion of the diaphragm in a supine position with

subjects breathing naturally [17, 18, 27]. This is the first study exploring the difference in dia-

phragmatic excursions in a standing position while lifting a load and breathing versus breath

holding, and determining how is diaphragmatic motion modified when IAP is intentionally

increased with VCAM. We hypothesized that postural activity, i.e., load-lifting, would cause

caudal displacement of the diaphragm during both inspiration and expiration monitored by

the ultrasonography and also increased AWT monitored by the DNS brace. Additionally, we

expected VCAM would reduce diaphragmatic excursions throughout an entire breathing

cycle.

Methods

Participants

A sample of 31 subjects (average age = 28.7 ± 5.8 years) were recruited via social media to par-

ticipate in the study. Demographic characteristics are summarized in Table 1. First, the exami-

nation procedures were explained, and written informed consent was signed by each subject.

The exclusion criteria were: (1) low back pain, (2) previous abdominal or spine surgery, (3)

respiratory or musculoskeletal disorder, (4) any symptoms of any kind of disease, (5) medical/

surgical procedure or trauma within four weeks before initiation of the study, (6) pregnancy,

(7) and waist to height ratio (WHtR) greater than 0.59. The study was conducted in accor-

dance with the Declaration of Helsinki, approved by the Ethics Committee of the University

Hospital Motol in Prague, Czech Republic (Approval ID: EK-237/21), and was prospectively

registered at clinicaltrials.gov with trial registration number NCT04841109.

Instrumentation

M-mode ultrasonography. We assessed real-time diaphragm displacement using M-

mode ultrasonography with Toshiba (Canon Medical Systems Corporation, Otawara, Japan)

Aplio i600 ultrasound system. The 3.5 MHz convex transducer Toshiba PVI-475BT (i8C1) was

Table 1. Descriptive statistics of participants (mean ± standard deviation).

Participants Age (yr) Height (cm) Weight (kg) Waist Circumference (cm) Waist/Height Ratio Body Mass Index (kg/m2)

All (n = 31) 28.7 ± 5.8 173.2 ± 8.5 66.2 ± 9.2 74.1 ± 5.9 0.43 ± 0.03 22.0 ± 1.6

Males (n = 11) 28.4 ± 5.0 181.0 ± 6.0 74.1 ± 8.0 78.9 ± 6.2 0.44 ± 0.03 22.6 ± 1.7

Females (n = 20) 28.9 ± 6.4 169.0. ± 6.4 61.9 ± 6.8 71.5 ± 3.9 0.42 ± 0.02 21.6 ± 1.4

https://doi.org/10.1371/journal.pone.0275389.t001
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held in the right subcostal area between the mid-clavicular and anterior axillary lines, where

the liver served as an acoustic window. The ultrasound beam was directed medially, cranially,

and dorsally to visualize the perpendicularly posterior third of the right hemidiaphragm [36–

38]. To maximize the accuracy in the probe positioning and directing, all ultrasonographic

examinations were performed by the same examiner, who has achieved 32 years’ experience.

In the M-mode image, the diaphragm appears as a single echogenic line that moves towards

the probe during inspiration and away from the probe during expiration. The diaphragmatic

position was evaluated by measuring its vertical distance from the baseline in mm [39]. A

smaller number in mm represents a more caudal position of the diaphragm. The excursions

were then calculated as a difference between the end-inspiratory and the end-expiratory posi-

tion within one breathing cycle.

DNS brace. To correlate the postural function of the diaphragm with abdominal muscle

tension, we simultaneously measured AWT using a device called DNS Brace, described in pre-

vious studies [34, 35]. A recent study [35] demonstrated strong correlations exist between

AWT measured by the DNS Brace and IAP measured via anorectal pressure using high-resolu-

tion manometry; meaning the DNS Brace is a valid tool to monitor changes in IAP accurately.

Before the examination, all four sensors attached to DNS Brace were calibrated to 0 kilopascals

(kPa) in the tidal end-expiratory phase of the breathing cycle.

Spirometry. This investigation also included spirometry, which for the purposes of this

study was primarily used to define the end-inspiratory, and end-expiratory phases of the

breathing cycle, as well as to confirm the breath-holding state. Spirometric measurements

were performed using a portable spirometer Jaeger MasterScope (VIASYS Healthcare, Hoech-

berg, Germany).

Procedures

All study procedures were conducted in the same examination room and under the same con-

ditions. Participants were requested not to eat for at least 1.5 hours before the procedure. The

examination consisted of three consecutive scenarios wherein ultrasonographic, spirometric,

and AWT measurements were performed simultaneously. The assessment was performed by

the same examiners in order to reduce inter-observer variability and repeated three times to

reduce intra-observer variability. All data were stored for subsequent analysis, and the average

value for each measurement was calculated.

Subjects were assessed in a standing position with their feet shoulder-width apart. Their

arms were close to the body with the elbows bent, and their hands were placed on the kettlebell

handle. The kettlebell weight was approximately 20% (18–22%) of the participant’s body

weight with the lightest kettlebell weighing 10 kg and the heaviest weighing 18 kg. The partici-

pant was instructed to lift and hold the kettlebell only by bending the elbows without tilting

the body. The DNS brace was tightly fitted to the participant’s body with two front sensors

bilaterally placed above the groin and two back sensors to the trigonum lumbale in the dorso-

lateral part of the abdominal wall. Subjects breathed through a mouthpiece connected to a

pneumotachograph and used a nasal clip to preclude air leakage. The ultrasonographic probe

was held under their right arm in the subcostal region and maneuvered to obtain the clearest

image of the posterior third of the diaphragm (see Fig 1). Prior to the examination, each sub-

ject inhaled and exhaled several times to check that all instruments were measuring correctly.

All examiners were blinded to the results of other assessments.

Each scenario was initiated by deep inspiration followed by a rapid forced expiration that

served as a time marker to synchronize all the recordings. One recording lasted no longer than

20 seconds. The scenarios were as follows:
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Scenario 1 started with one tidal inspiration and expiration. The participant then inhaled

and held the breath at the end of the inspiratory phase followed by lifting and lowering the ket-

tlebell, after that exhaled and held the breath at the end of the expiratory phase while lifting

and lowering the kettlebell.

Scenario 2 consisted of two tidal inspirations and expirations, then the kettlebell was lifted,

followed by two loaded inspirations and expirations while the kettlebell was held.

Scenario 3 consisted of two tidal inspirations and expirations, then the participant inten-

tionally contracted the abdominal muscles and lifted the kettlebell, followed by two loaded

inspirations and expirations while holding the kettlebell and having the abdominal wall tensed.

Statistical analysis

Descriptive statistics were calculated for all variables. Data are mean ± standard deviation

(SD), unless otherwise stated. Reliability of the ultrasonography and DNS Brace measures

were calculated from the average measurements of two tidal breaths recorded at different time

points for each subject. Intraclass correlation coefficient estimates (ICC2, k), 95% confidence

intervals, and standard error of measurement (SEM) were calculated from tidal inspiration

and expiration, separate from the different scenarios, and are presented in Table 2. The ICC’s

were calculated based on a mean-rating (k = 3), absolute-agreement, 2-way mixed-effects

model. Reliability was interpreted as poor (< 0.5), moderate (0.5–0.75), good (0.75–0.9), and

excellent (> 0.9) [40]. Paired-samples t-tests were used to determine changes in the diaphragm

position and AWT for each scenario described, with effect sizes interpreted as small (< 0.2),

medium (0.5), or large (> 0.8) as proposed by Cohen [41]. Power analysis, using G�Power 3.1,

indicated an 80% chance of detecting a medium effect size of 0.5 in 27 subjects with statistical

significance determined a priori at p< 0.05 (one-tailed). With highly correlated variables,

Bonferroni corrections were utilized when testing multiple hypotheses. All data analyses were

conducted using the Statistical Package for the Social Sciences (SPSS version 28.0 for Mac;

IMB Corp, Armonk, NY).

Fig 1. Examination procedures. (A) Participant assessed simultaneously by M-mode ultrasonography, spirometry,

and DNS brace. (B) Spirometry record displayed in Grapher software (C) M-mode view of diaphragm motion. (D)

Graphical representation of recorded data from DNS Brace. All of these recordings were taken during the same

examination of one participant in Scenario 2.

https://doi.org/10.1371/journal.pone.0275389.g001
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Results

Preliminary analyses

Univariate outliers were assessed by calculating z-scores for each of the dependent variables

using complete data for all scenarios (n = 31). Normality was assessed using ± 1.96 as the cutoff

for the absolute z-score skew and kurtosis (respectively) for each variable [42]. Results evi-

denced one variable that was not normally distributed, and three scores considered to be outli-

ers with absolute z-score values greater than the recommended cutoff value of 3.29 (one in

Scenario 2, and two in Scenario 3). These outliers did not occur on the same variables, and

were handled by winsorization; where the outlier retained its rank value and was replaced with

the next largest value [43]. This process improved overall normality to within acceptable

ranges, with no absolute z-scores larger than ± 1.96 for skew or kurtosis after correction of the

outliers.

Hypothesis testing

Table 3 displays the means ± standard deviation (SD), mean differences, and outcomes of each

scenario. These data are presented graphically in Fig 2.

Scenario 1. For Scenario 1, ultrasonography demonstrated the inspiratory breath-hold

position of the diaphragm (mm) was not statistically different from inspiration when holding

the weight (t(30) = .327, p = 0.37), but the DNS Brace demonstrated significantly greater AWT

values (kPa) during inspiration when holding the weight (t(30) = -8.27, p< .001). During expi-

ration, ultrasonography demonstrated the expiratory breath-hold position of the diaphragm

was significantly different when holding the weight (t(30) = 6.13, p< .001), and the DNS

Brace also demonstrated significantly greater AWT values (kPa) during expiration when hold-

ing the weight (t(30) = -8.27, p< .001).

Scenario 2. For Scenario 2, ultrasonography demonstrated the loaded inspiratory breath

position of the diaphragm (mm) was significantly lower, i.e. more caudal, when holding the

weight compared to tidal breathing (t(30) = 4.84, p< .001.), but the loaded expiratory position

was not significantly different from tidal breathing (t(30) = 1.31, p = 0.10). The total excursion

of the diaphragm (difference between expiratory and inspiratory values in mm) was signifi-

cantly greater during loaded breathing compared to tidal breathing (t(30) = 3.48, p = .002).

The DNS Brace demonstrated significantly greater AWT values (kPa) during both loaded

inspiration (t(30) = -7.0, p< .001.) and loaded expiration (t(30) = -7.10, p< .001.) compared

to tidal breathing.

Table 2. Intraclass correlation coefficients of ultrasonography and DNS brace values during tidal inspiration and expiration (ICC 2, k).

95% Confidence Interval F Test With True Value 0

Measure ICC Lower Bound Upper Bound SEM Value df1 Sig

Ultrasonography Inspiration .985�� .970 .993 1.68 71.63 30 < .001

Expiration .989�� .978 .995 1.54 93.40 30 < .001

DNS Brace Inspiration .657� .291 .834 0.82 2.90 30 .002

Expiration .569� .136 .789 0.78 2.57 30 .006

Note: ICC = Intraclass Correlation Coefficient

SEM = Standard Error of Measurement

��Denotes: Excellent reliability

�Denotes: Moderate reliability

https://doi.org/10.1371/journal.pone.0275389.t002
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Scenario 3. For Scenario 3, ultrasonography demonstrated the VCAM loaded position of

the diaphragm (mm) was not significantly different from the spontaneous loaded breathing

position for inspiration (t(30) = 1.86, p = .037) or expiration (t(30) = 2.07, p = .023) after a

Bonferonni correction. The total VCAM excursion of the diaphragm (difference between expi-

ratory and inspiratory values in mm) was also not significantly different from the spontaneous

loaded excursion (t(29) = 1.29, p = .104). The DNS Brace demonstrated significantly greater

AWT values (kPa) during both VCAM loaded inspiration (t(30) = -8.62, p< .001.) and expira-

tion (t(30) = -6.19, p< .001.), compared to spontaneous loaded breathing.

Discussion

This study demonstrated that when lifting a load, the diaphragm descends caudally and

increases its excursions while abdominal wall tension significantly increases as well. Voluntary

contraction of the abdominal wall does not reduce diaphragmatic excursions and does not

influence its position during respiration compared to natural loaded breathing. Our results

add to the current knowledge on spinal stabilization mechanisms.

During tidal breathing, the increase in IAP is not sufficient to improve spinal stiffness [5] as

the force exerted by the diaphragm reaches only about 10% of its maximum [44]. IAP rises

with inspiratory volume and is highest during maximal inspiratory effort [5, 45]. Since the

abdominal contents are essentially incompressible, all diaphragmatic displacements must be

met by equal displacements of the anterolateral abdominal wall and vice versa [46]. With

increased ventilation, the abdominal muscles are engaged in expiration, rising IAP [4, 47].

Table 3. Changes in ultrasonography values (mm) and DNS brace values (kPa) during different scenarios of holding a load equivalent to 20% body weight (mean

[standard deviation]).

Scenario 1a Measure Breath Hold Beginning Position Breath Hold Loaded Position Mean Difference 95% CI Effect Size P Value
Ultrasonography Inspiration 93.54 (13.59) 93.22 (12.41) 0.32 (-1.69, 2.33) 0.06 0.373

Expiration 114.67 (11.40) 110.23 (10.95) 4.45 (2.96, 5.93) 1.1 < .001�

DNS Brace Inspiration 3.69 (2.27) 12.32 (5.99) -8.63 (-10.65, -6.61) -1.57 < .001�

Expiration 2.43 (1.46) 7.38 (3.54) -4.95 (-6.17, -3.73) -1.49 < .001�

Scenario 2b Measure Tidal Breathing Loaded Breathing Mean Difference 95% CI Effect Size P Value
Ultrasonography Inspiration 96.94 (13.03) 93.35 (12.92) 3.58 (2.07, 5.09) 0.87 < .001��

Expiration 116.18 (14.35) 115.42 (14.51) 0.76 (-0.42, 1.95) 0.24 0.201

DNS Brace Inspiration 2.57 (1.12) 6.02 (2.80) -3.44 (-4.45, -2.44) -1.26 < .001��

Expiration 2.41 (1.08) 6.47 (3.41) -4.06 (-5.23, -2.89) -1.28 < .001��

Ultrasonography Excursion 19.24 (6.85) 22.06 (8.79) -2.82 (-4.48, -1.16) -0.63 .002��

Scenario 3c Measure Loaded Breathing VCAM Loaded Breathing Mean Difference 95% CI Effect Size P Value
Ultrasonography Inspiration 93.35 (12.92) 90.74 (14.89) 2.61 (-0.26, 5.49) 0.33 0.037

Expiration 115.42 (14.51) 112.05 (12.93) 3.36 (0.05, 6.68) 0.37 0.023

DNS Brace Inspiration 6.02 (2.80) 12.70 (6.05) -6.68 (-8.26, -5.09) -1.55 < .001��

Expiration 6.47 (3.41) 12.10 (6.01) -5.63 (-7.49, -3.77) -1.11 < .001��

Ultrasonography Excursion 22.06 (8.79) 20.42 (9.54) 1.65 (-0.97, 4.26) 0.23 0.104

aSubject holds breath at the end of full Inspiration and Expiration
bSubject holds load with natural breathing and spontaneous abdominal activity
cSubject voluntarily contracts abdominal muscles prior to holding load while breathing naturally

Note: VCAM: Voluntary contraction of abdominal muscles

Effect size = calculated Cohen’s d

�Statistically significant difference observed (Bonferroni Correction P < 0.025)

��Statistically significant difference observed (Bonferroni Correction P < 0.016)

https://doi.org/10.1371/journal.pone.0275389.t003
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Fig 2. Graph showing outcomes of each scenario. (A) Diaphragm position, excursions (mm), and (B) abdominal wall tension (kPa)

during breath-holding, tidal breathing, loaded breathing, and loaded breathing with VCAM (Mean ± Standard Deviation).

https://doi.org/10.1371/journal.pone.0275389.g002
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Because abdominal muscles have an antagonistic respiratory function to the diaphragm, their

contraction displaces the diaphragm cranially to deflate the lungs [48]. Dual postural-respira-

tory activity has been confirmed in both the diaphragm and TrA [2, 3]. The position of the dia-

phragm is determined by the balance between its contraction and the tension of the

abdominal wall muscles [49–51]. When postural demands increase, the abdominal muscles

and diaphragm must contract synergistically to achieve adequate IAP for spinal stabilization.

It must also be emphasized that not only the diaphragm and abdominal muscles are involved

in spinal stabilization, but also pelvic floor muscles [52], paraspinal muscles, and deep intrinsic

back muscles such as rotatores and multifidus [53, 54]. The involvement of these muscles was

not directly explored in this study.

To our knowledge, a stand-alone postural displacement of the diaphragm has not been

reported in previous studies. Hodges and Gandevia [2] showed that the movement of the

upper limb during breath-holding at the end of expiration activated the diaphragm, assessed

by EMG. Displacement of the diaphragm without breathing was demonstrated by Kolar [26]

during a maneuver in which the abdominal wall was pressurized and expanded. Using MRI

and EMG diaphragmatic recordings Kolar’s team [26] demonstrated that individuals are capa-

ble of moving their diaphragm voluntarily, and that non-respiration diaphragm activity is sub-

ject of voluntary control but the amplitude of movement differs from person to person. In

Scenario 1, we found that during lifting a load without breathing, caudal displacement of the

diaphragm significantly occurred in the expiratory position. This finding shows that the pos-

tural displacement of the diaphragm is fully independent of its respiratory activity. In the

inspiratory position, no significant displacement of the diaphragm was noted, which suggests

that at the end of tidal inspiration, the diaphragm was already contracted enough to ensure sta-

bilization of the spine in relation to the given load. This may indicate that postural contraction

of the diaphragm can be substituted to some extent by inspiratory activity to achieve the

required increase in IAP. Our observation is in line with studies reporting increased inspira-

tory volume depending on the magnitude of the load lifted, with inspiration occurring imme-

diately prior to lifting as a consistent pattern of natural breath control during lifting tasks [11,

55–57].

In Scenario 2, the diaphragm moved significantly more caudally in the inspiratory phase of

loaded breathing compared to tidal breathing. For loaded expiration, there was no significant

change, and the diaphragm ascended similarly to tidal breathing. However, AWT was signifi-

cantly greater during loaded expiration than during loaded inspiration. This indicates that the

diaphragm is more involved in the IAP increase during inspiration, whereas the abdominal

muscles are more active during expiration in accordance with their respiratory function. This

is in line with the findings of Hodges and Gandevia [3], where the amplitude of diaphragm

EMG was higher in inspiration than in expiration, while TrA activity was the opposite. This

further supports results noted by Kolar et al. [27], where dynamic MRI was used to measure

diaphragmatic displacement in the supine position while inducing postural activity by the

pressure of the upper and lower extremities against resistance. They showed significantly more

caudal diaphragmatic displacement during inspiration with isometric postural limb activities

than during expiration with isometric limb activity. Additionally, they also found no signifi-

cant change in the expiratory position of the diaphragm when using the upper limbs for pos-

tural loading. Thus, it appears that postural functions further challenge the diaphragm during

inspiration, and the abdominal muscles are further challenged during expiration, which should

be considered when targeting specific muscles during postural training.

Hodges et al. [29] investigated the postural-respiratory function of the diaphragm and

other muscles of the trunk with higher respiratory demands. These researchers reported that

respiratory function was superior to postural function because EMG activity of the diaphragm
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and TrA declined after one minute of increased ventilation, along with a reduction in IAP. In

our study, the priority of the respiratory function of the diaphragm during postural loading is

evident in Scenario 3. We expected that the intentional increase in IAP evoked by VCAM

would reduce the inspiratory displacement of the diaphragm. Surprisingly, the VCAM loaded

breathing was not significantly different from natural loaded breathing, although there was

about a twofold increase in VCAM AWT. We speculate that the diaphragm increases its con-

tractility to overcome the higher IAP when the abdominal muscles are more tense to maintain

sufficient ventilation. Therefore, it can be assumed that greater contraction of the abdominal

muscles within the stabilizing function induces stronger diaphragmatic activity. Our findings

support the hypothesis that weight-lifting, which results in greater IAP, provides a strength-

training stimulus for the diaphragm [58, 59]. This tightly coupled muscle function has also

been observed in reverse, a study examining inspiratory resistance-training of the diaphragm

noted increased thickness of not only the diaphragm but also the TrA [60]. Hence, VCAM

could be beneficial as part of postural-respiratory training, especially for people with LBP pre-

senting with higher diaphragm positions [17, 18] and smaller diaphragm excursions [17, 18,

61], which is compensated by greater inspiration within the lungs to secure adequate IAP

when performing lifting tasks [62]; or for athletes with lumbopelvic pain who have been

shown to have a reduced diaphragm thickness [63]. This is further supported by Finta et al.

[60], who confirmed the combination of trunk and diaphragm strengthening as a viable thera-

peutic approach for chronic nonspecific LBP.

Further research is needed to investigate the movement of the diaphragm and AWT under

higher loads both in healthy individuals and subjects with LBP or respiratory diseases.

Limitations

There were some limitations in our study. First, the lifted load corresponded to approximately

20% of the subject’s body weight. For higher loads, most subjects were unable to lift the weight

with only elbow flexion while not tilting the body, which was essential for stable ultrasonogra-

phy imaging.

We attempted to eliminate potential measurement error caused by uneven probe pressure

by repeating each assessment three times for each subject. Another possible error could arise

from an increase in AWT, which could conceivably lengthen the distance of the probe from

the diaphragm. This was not shown to be the case in either scenario. In all scenarios during

lifting a load, the distance of the diaphragm from the probe remained equal or approached

compared to the unloaded situations. There may be minor inaccuracies in ultrasound imaging,

but the m-mode ultrasonography of the diaphragm is generally considered to be a reliable and

accurate type of assessment [32, 33].

The DNS brace, although adjustable, may not fit on everyone’s body in the same way and

therefore measure AWT activity with all sensors identically. This measurement variability was

reduced by calibrating before the actual measurement and calculating the average pressure

from all four sensors.

When interpreting the results, also the role of fatigue or motor learning resulting from the 3

repetitions of each test should be considered. However, since each sequence was of only 20 sec-

onds duration, with a pause after each trial and no subject complained of fatigue nor com-

mented on any execution change when repeating the test, we do not think these factors were

of relevant importance.

We did not analyze the data by gender due to the limited number of participants and

numerical disproportion between men and women. This could be a goal of future studies since

sex differences in diaphragmatic excursions [33, 36, 64] were reported in some studies. We

PLOS ONE Postural-respiratory function of the diaphragm

PLOS ONE | https://doi.org/10.1371/journal.pone.0275389 October 10, 2022 10 / 15

https://doi.org/10.1371/journal.pone.0275389


have also measured spirometry data which are not included in this manuscript as they would

be beyond the scope of this paper. Spirometry data will be presented in a subsequent article.

Conclusion

This study investigated how the position of the diaphragm changes during breathing and

breath-holding while lifting a load. The second aim was to clarify how the voluntary contrac-

tion of the abdominal wall resulting in IAP increase modifies diaphragmatic position and

excursions.

Our findings demonstrate that a postural task, such as load-lifting, induces caudal displace-

ment of the diaphragm independently of respiration in breath-holding situations. This study

also confirms that the diaphragm moves significantly more caudally during the inspiratory

phase of breathing and increases its excursions when loaded. However, it was not proven that

VCAM reduces diaphragm motion, despite a twofold increase in AWT compared to natural

loaded breathing.
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